STORMSIM: MULTIVARIATE COASTAL HAZARD RESPONSE STOCHASTIC SIMULATION

Abigail L. Stehno, Kevin Hodgens, Fabian Garcia-Moreno, Norberto Nadal-Caraballo, Jeffrey Melby U.S. Army Corps of Engineers R&D Center

FSBPA 06 February 2025

COASTAL STRUCTURES IN STORMSIM **CHS Storms** and Uncertainties **Probabilistic** Responses Wave transformation to Toe **Define** Armor Units (Dn50) alternatives, Crest SSL/SWL scenarios, SS-JPM physics, limit (Tropical Cyclones) states SS-PST (Extratropical Cyclones) Probabilistic Responses SS - PROS SS-LCS (performance) (design)

UNCERTAINTIES

Gonzalez et al. (2019)

QUANTIFYING COASTAL STORM HAZARDS

Type of probabilistic analysis is region-specific due to different dominant forcing

Extratropical Cyclones (XCs)- Extreme Value Analysis

StormSim Probabilistic Simulation Technique (StormSim-PST)

Tropical Cyclones (TCs) - Joint Probability Method

Application of synthetic TCs due to limited historical record

 Δp = central pressure deficit V, = translational speed R_{max} = radius of maximum winds Θ = heading

HISTORICAL STORMS TO SYNTHETIC STORMS

Nadal-Caraballo et al. (2015) Nadal-Caraballo et al. (2020)

COASTAL HAZARDS SYSTEM

JOINT PROBABILITY METHOD (JPM)

Storm response hazard

Storm is randomly sampled, uncertainty is added to waves and water levels

Integrate hazard using discrete storm weights

Mean Hazard Curve : $\lambda_{r(\hat{x})>r} \approx \sum_{i=1}^{n} \lambda_{i} P[\{(r(\hat{x}) * \sigma_{int}) \leq \sigma_{c}\} > r | \hat{x}, \sigma]$

Confidence Limit : CL = $\lambda_{r(\hat{x})>r}$ +(z-score)* $(\lambda_{r(\hat{x})>r} \leq \sigma_c) * \sigma_{cL}$

Storm

PROBABILISTIC SIMULATION TECHNIQUE (PST)

Storm is sampled using bootstrap resampling, uncertainty is added to waves and water levels

Low frequency: Generalized Pareto

Distribution (GPD)

High frequency: Empirical distribution

COMBINED JOINT PROBABILITY

Characterization of Storm Climate

High- vs. Low-Frequency Populations

- **Extra-tropical Cyclones (XC)**
 - Annual exceedance probability, AEP ≈ 50% to 2%
 - Average recurrence interval, ARI ≈ 2 to 50 years
- **Tropical Cyclones (TC)**
 - Annual exceedance probability, AEP ≈ 1% to 0.1%
 - Average recurrence interval, ARI ≈ 10 to 1000 years (regulatory)
- **Combined Cyclones (CC)**

$$P(CC) = P(TC) + P(XC)$$

COASTAL STRUCTURE RESPONSES

Figure 1. Examples of Coastal Natural and Nature-Based Features SEAGRASS & MARSHLAND PLANT GROWTH DISSIPATTED_ WAVE ACTION

Source: U.S. Army Corps of Engineers, Engineering With Nature, "Natural and Nature-Based Features," at https://ewn.el.erdc.dren.mil/nnbf.html.

SOME STORMSIM APPLICATIONS

- Poplar, James, Barren DDI
- Neah Bay Breakwater
- Point Judith Breakwater
- Azores Breakwater
- FEMA FIS revision TX
- FEMA Region V FIS
- S2G Feasibility (2012)
- TX local studies (2012)
- Bayou Caddy, MS
- Navy Task Force EVA
- NACCS
- Herbert Hoover Dike
- NRC Uncertainty
- Coastal Texas Comprehensive Study (2017)
- Coos Bay Jetty
- Dauphin Island Barrier Island Response
- Dyke Marsh
- Turbo Columbia Breakwater
- NASA Wallops Island

- Sabine to Galveston PED
- CTXCS Spine Morphology
- Louisiana Master Plan 2023
- Louisiana Levee Recertification
- Louisiana Watershed Initiative
- FEMA MS reanalysis
- SACS
- NJ Back Bay Study
- Okaloosa PCLA
- FEMA FIS revision St Tammany Parish
- Mid-Bay DDI
- The Battery PCLA
- Duluth Harbor Pier
- Rhode Island CSRM
- FEMA FIS revision MS
- FEMA RiskMap 2.0
- Lake Erie Seiche Study
- DC Metro Coastal Study
- Compound Flooding Study
- NRC Pilot Study

- Levees
- Breakwaters
- Dunes
- Floodwalls
- NNBF

FREQUENCY-BASED VS RESPONSE-BASED

Frequency-based

Note: Structure response probability is not equal to the storm response probabilities

Response-based

Melby et al. (2021) Stehno (2021)

Structure

PROBABILISTIC RESPONSE OF STRUCTURES (PROS)

Melby et al. (2021) Stehno (2021)

LIFE-CYCLE SIMULATION (LCS)

Melby et al. (2021)

REFERENCES

- Gonzalez, Nadal-Caraballo, Melby, Cialone, (2019). Quantification of Uncertainty in Probabilistic Storm Surge Models: Literature Review. Technical Report ERDC/CHL TR-21-15, Vicksburg, MS: U.S. Army Engineer Research and Development Center
- Melby, J.A., Nadal, N.C., Males, R.M. (2011). Cssim: Breakwater-Harbor Time-Dependent Life-Cycle Analysis Software.
 Coastal Structure 2011 Conference Proceedings, World Scientific, Singapore. Pp 649-658
- Melby, J.A., Massey, T.C., Das, H.S., Nadal-Caraballo, N.C., Gonzalez, V,M., Bryant, M.A., Tritinger, A.S., Provost, L.A., Owensby, M.B, Stehno, A.L. (2021). Coastal Texas Protection and Restoration Feasibility Study: Coastal Texas flood risk assessment: hydrodynamic response and beach morphology. ERDC TR-21-11. U.S. Army Corps of Engineers
- Melby, J.A., Massey, T.C., Stehno, A.L., Nadal-Caraballo, N.C., Misra, S., Gonzalez, V.M. (2021). Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design PED Hurricane Coastal Storm Surge and Wave Hazard Assessment: Report 1- Background and Approach. Technical Report ERDC/CHL TR-21-15, Vicksburg, MS: U.S. Army Engineer Research and Development Center. http://dx.doi.org/10.21079/11681/41820
- Nadal-Caraballo, N. C., J. A. Melby, V. M. Gonzalez, A. T. Cox (2015). North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Hazards from Virginia to Maine. ERDC/CHL TR-15-5. U.S. Army Engineer R&D Center, Vicksburg, M.S
- Nadal-Caraballo, Campbell, Gonzalez, Torres, Melby, Taflanidis, (2020). Coastal Hazards System: A Probabilistic Coastal Hazard Analysis Framework. In: Malvárez, G. and Navas, F. eds., Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1211-1216.
- Stehno, A.L., (2021). Coastal Structure Overtopping and Overflow Stochastic Simulation Method Comparison. M.S. Thesis. Mississippi College, Clinton, Mississippi. <u>10.13140/RG.2.2.10123.41761</u>

THANK YOU

Abigail L. Stehno
Abigail.L.Stehno@usace.army.mil

Kevin C. Hodgens, Kevin.C.Hodgens@usace.army.mil Fabian A. Garcia-Moreno, Fabian.A.Garcia-Moreno@usace.army.mil Norberto C. Nadal-Caraballo, Norberto.C.Nadal-Caraballo@usace.army.mil Jeffrey A. Melby, Jeffrey.A.Melby@usace.army.mil

